
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 5 December 2022

Markus Püschel, David Steurer

François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 11 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 12 December 2022.

Exercises that are marked by
∗

are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 11.1 Shortest paths by hand.

Dijkstra’s algorithm allows to �nd shortest paths in a directed graph when all edge costs are nonnega-

tive. Here is a pseudo-code for that algorithm:

Algorithm 1

Input: a weighted graph, represeted via c(·, ·). Speci�cally, for two vertices u, v the value c(u, v)
represents the cost of an edge from u to v (or∞ if no such edge exists).

function Dijkstra(G, s)
d[s]← 0 . upper bounds on distances from s
d[v]←∞ for all v 6= s
S ← ∅ . set of vertices with known distances

while S 6= V do
choose v∗ ∈ V \ S with minimum upper bound d[v∗]
add v∗ to S
update upper bounds for all v ∈ V \ S:

d[v]← minpredecessor u∈S of v d[u] + c(u, v)
(if v has no predecessors in S, this minimum is∞)

We remark that this version of Dijkstra’s algorithm focuses on illustrating how the algorithm explores

the graph and why it correctly computes all distances from s. You can use this version of Dijkstra’s

algorithm to solve this exercise.

In order to achieve the best possible running time, it is important to use an appropriate data structure

for e�ciently maintaining the upper bounds d[v] with v ∈ V \S, as you saw in the lecture on December

1. In the other exercises/sheets and in the exam you should use the running time of the e�cient version

of the algorithm (and not the running time of the pseudocode described above).

Consider the following weighted directed graph:

s

a b

c

d e

5

3

10

1

8

5

9

3

1

2

a) Execute the Dijkstra’s algorithm described above by hand to �nd a shortest path from s to each

vertex in the graph. A�er each step (i.e. a�er each choice of v∗), write down:

1) the upper bounds d[u], for u ∈ V , between s and each vertex u computed so far,

2) the set M of all vertices for which the minimal distance has been correctly computed so far,

3) and the predecessor p(u) for each vertex in M .

Solution:

When we choose s: d[s] = 0, d[a] = d[b] = d[c] = d[d] = d[e] =∞, M = {s}, there is no p(s).

When we choose b: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 10, d[d] = d[e] =∞, M = {s, a, b}, there

is no p(s), p(a) = p(b) = s.

When we choose a: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 8, d[d] = d[e] =∞, M = {s, a, b}, there is

no p(s), p(a) = p(b) = s.

When we choose c: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 6, d[d] = 13, d[e] = ∞, M = {s, a, b, c},
there is no p(s), p(a) = p(b) = s, p(c) = a.

When we choose e: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 6, d[d] = 13, d[e] = 9, M = {s, a, b, c, e},
there is no p(s), p(a) = p(b) = s, p(c) = a, p(e) = c.

When we choose d: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 6, d[d] = 11, d[e] = 9,M = {s, a, b, c,d, e},
there is no p(s), p(a) = p(b) = s, p(c) = a, p(d) = e, p(e) = c.

b) Change the weight of the edge (a, c) from 1 to −1 and execute Dijkstra’s algorithm on the new

graph. Does the algorithm work correctly (are all distances computed correctly) ? In case it breaks,

where does it break?

Solution:

�e algorithm works correctly.

When we choose s: d[s] = 0, d[a] = d[b] = d[c] = d[d] = d[e] =∞.

When we choose b: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 10, d[d] = d[e] =∞.

When we choose a: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 8, d[d] = d[e] =∞.

When we choose c: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 4, d[d] = 13, d[e] =∞.

When we choose e: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 4, d[d] = 13, d[e] = 7.

2

When we choose d: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 4, d[d] = 9, d[e] = 7.

c) Now, additionally change the weight of the edge (e, b) from 1 to −6 (so edges (a, c) and (e, b) now

have negative weights). Show that in this case the algorithm doesn’t work correctly, i.e. there exists

some u ∈ V such that d[u] is not equal to a minimal distance from s to u a�er the execution of the

algorithm.

Solution:

�e algorithm doesn’t work correctly, for example, the distance from s to b is 1 (via the path s-a-c-

e-b), but the algorithm computes exactly the same values of d[·] as in part b), so d[b] = 3.

Exercise 11.2 Depth-First Search Revisited (1 point).

In this exercise we examine the depth-�rst search in a graphG = (V,E), printed here for convenience.

For concreteness, you can assume that V = {1, . . . , n} and that for v ∈ V we have access to an

adjacency list adj[v].

Algorithm 2

Input: graph G, given as adj and n ≥ 1.

Global variable: marked[1 . . . n], initialized to [False, False, . . . , False].
Global variable: T , initialized to T ← 1.

Global variable: pre[1 . . . n]. . Pre-order number.

Global variable: post[1 . . . n]. . Post-order number.

function DFS(v)

marked[v]← True
pre[v]← T
T ← T + 1
for each neighbor w ∈ adj[v] do

if not marked[w] then
DFS(w)

post[v]← T
T ← T + 1

for v ∈ {1, . . . , n} do
if not marked[v] then

DFS(v)

(a) Consider the graphical representation of the DFS order where a vertex v is represented as an interval

[pre(v), post(v)]. Give a short argument why in directed or undirected graphs no two such intervals

can intersect without one being fully contained in the other. Speci�cally, argue why the situation

depicted in the �gure below cannot happen.

pre(a) post(a)

pre(b) post(b)

Solution:

3

Assume, for the sake of contradiction that the pre/post relations can be achieved as in the �gure.

Hence, the DFS function is called on vertex a before being called on b. However, the �gure stipulates

that b starts before a completes. Now, since recursive calls stack (i.e., a parent call can only �nish

a�er all of its children’s calls �nish), it must be the case that b completes before a completes. Hence,

interval b would be completely contained within interval a, which is contradicting the �gure.

Grading: To get points, you need to mention(or imply) the observation that recursive calls stack.

(b) Give a short argument why undirected graphs cannot have any cross edges.

Solution:

A crossing edge is an edge between vertices a and b, where the intervals corresponding to those

vertices are disjoint (see the �gure).

pre(a) post(a) pre(b) post(b)

Suppose this was the case. �en, in the recursive call corresponding to vertex a, we would discover

an unmarked neighbor b. Hence, the call to b would necessarily be a child of a, and {a, b} would

be a back/forward edge. �is completes the argument.

Grading: To get points, you need to recall the de�nition of crossing edge; and observe that the call

to b would necessarily be a child of a, which contradicts the de�nition.

(c) Prove that a directed graph is acyclic (i.e., a DAG) if and only if it has no back edges. �is was

proven in the lecture, but the goal here is to explicitly write out the entire argument.

Hint: You need to prove both directions of the equivalence.
Hint: For the (=⇒) direction, assume the opposite (there is a back edge), then simply �nd a cycle
containing that back edge. If needed, you can use without proof the property that if the interval of a is
contained within interval b, then there exists a simple path from b to a.
Hint: For the (⇐=) direction, we need to prove the graph is a DAG (i.e., acyclic). It is su�cient to
�nd a topological ordering such that all directed edges originate at vertices that are before their tail
(according to the ordering). One speci�c order that works is the reverse post-order.

Solution:

Direction (=⇒). Assume for the sake of contradicting that there is a back edge a → b. In other

words, the interval a is nested inside interval b. Hence, by DFS properties, there exists a simple

path p from b to a. Hence, p and a → b form a (directed) cycle. �is contradiction completes the

(=⇒) direction.

Direction (⇐=). It is su�cient to �nd a function π : V → {1, . . . , 2n} (called the topological

ordering) such that for every directed edge a → b we have π(a) > π(b) (it can be easily shown

that any graph that is consistent with π must be a DAG). Consider π := post, i.e., the post-order

and consider an edge a → b. As covered in the lecture, there are 4 possible relations between the

intervals of a and b: (1) the intervals are disjoint and a is before b, (2) the intervals are disjoint and b
is before a (3) a is nested within b, or (4) b is nested within a. Option (1) is impossible as then the call

to a would trigger a nested call to b. In option (2), it holds that post(a) = π(a) > π(b) = post(b).
Option (3) is impossible since then a → b is a back edge and we assumed those don’t exist. In

option (4), it holds that post(a) = π(a) > π(b) = post(b). Since all options satisfy π(a) > π(b),
we conclude that the π is a topological ordering, hence G is a DAG. �is completes the (⇐=)

direction.

Grading: For direction (=⇒), you need to observe that there is a path p from b to awhich leads to

4

cycle with backedge. For direction (⇐=), you need to list all 4 di�erent cases, and argue that for

possible cases, there is a topological ordering. You also need to mention that existence of topological

ordering implies DAG.

Exercise 11.3 Language Hiking (2 points).

Alice loves both hiking and learning new languages. Since she moved to Switzerland, she has always

wanted to discover all four language regions of the country in a single hike – but she is not sure whether

her week of vacation will be su�cient.

You are given a graph G = (V,E) representing the towns of Switzerland. Each vertex V corresponds

to a town, and there is an (undirected) edge {v1, v2} ∈ E if and only if there exists a direct road going

from town v1 to town v2. Additionally, there is a function w : E → N such that w(e) corresponds to

the number of hours needed to hike over road e, and a function ` : V → {G,F, I,R} that maps each

town to the language that is spoken there
1
. For simplicity, we assume that only one language is spoken

in each town.

Alice asks you to �nd an algorithm that returns the walking duration (in hours) of the shortest hike

that goes through at least one town speaking each of the four languages.

For example, consider the following graph, where languages appear on vertices:

F

G

I

R

G G

GG

G

F

I

F

810

157

25 30

21

14

14 8

25630

9

4

12

12 12

9

25

�e shortest path satisfying the condition is marked in red. It goes through one R vertex, one I vertex,

two G vertices and one F vertex. Your algorithm should return the cost of this path, i.e., 40.

(a) Suppose we know the order of languages encountered in the shortest hike. It �rst goes from an

R vertex to an I vertex, then immediately to a G vertex, and reaches an F vertex in the end, af-

ter going through zero, one or more additional G vertices. In other terms, the form of the path

is RIGF or RIG…GF. In this case, describe an algorithm which �nds the shortest path satisfying

the condition, and explain its runtime complexity. Your algorithm must have complexity at most

O((|V |+ |E|) log |V |).

Hint: Consider the new vertex set V ′ = V × {1, 2, 3, 4} ∪ {vs, vd}, where vs is a ‘super source’ and
vd a ‘super destination’ vertex.

Solution:
1

G, F, I and R stand for German, French, Italian, and Romansh respectively.

5

Consider the vertex set V ′ above, as well as the following edge set E′ and weight function w′:

E′ = {{vs, (v, 1)} | {u, v} ∈ E, `(v) = R}
∪ {{(u, 1), (v, 2)} | {u, v} ∈ E, `(v) = I}
∪ {{(u, 2), (v, 3)} | {u, v} ∈ E, `(v) = G}
∪ {{(u, 3), (v, 3)} | {u, v} ∈ E, `(v) = G}
∪ {{(u, 3), (v, 4)} | {u, v} ∈ E, `(v) = F}
∪ {{(v, 4), vd} | v ∈ V }

w′({u′, v′}) =

{
0 if u′ = vs or v′ = vd

w({u, v}) if u′ = (u, i) and v′ = (v, j)

For each new vertex (v, i) ∈ V ′, the �rst component v ∈ V is a vertex in the original graph, while

i is a counter which measures the progress over the path: if i = 1, only an R town has been visited;

if i = 2, an R and an I town have been visited; if i = 3, an R, and I and at least one (or more) G

towns have been visited; if i = 4, an R, an I, one or more G, and an F town have been visited. �e

weight of this edge remains the same as before. As an arbitrary number of G towns can be visited,

we have transitions (u, 3)→ (v, 3) (G to G) as well as (u, 3)→ (v, 4) (G to F); since this is not the

case for R, I, and F, we have only transitions vs → (u, 1), (u, 1)→ (v, 2), and (u, 4)→ ve.

Moreover, a global source vertex vs is connected to all R vertices. �is corresponds to the choice of

the �rst vertex (where Alice will start hiking). Similarly, a global destination vertex vd is connected

to all vertices with i = 4 with edges of weight 0, corresponding to the choice of the last vertex.

�e length of the shortest path that follows the given pa�ern is exactly the length of the shortest

path between vs and vd in G′ = (V ′, E′) with weights w′. Since all weights are nonnegative, we

can use Dijkstra’s algorithm to �nd this shortest path.

�e complexity of Dijkstra’s algorithm is O((|V ′|+ |E′|) log(|V ′|)). Here, we have

|V ′| = |V | · 4 + 2 ≤ O(|V |)
|E′| ≤ |V |+ |V |+ |E| · 2 ≤ O(|V |+ |E|),

yielding O((|V |+ (|V |+ |E|)) log(|V |)) = O((|V |+ |E|) log(|V |)). Constructing the graph adds

a cost O(|V | + |E|) and extracting the result a O(1). We obtain a total runtime in O((|V | +
|E|) log(|V |)).

Grading: To get points, you need to 1. construct the correct graph 2. argue that it corresponds to

a shortest path problem in a nonnegative weight graph. 3. Use Dijkstra’s algorithm and gives the

right complexity.

(b) Now we don’t make the assumption in (a). Describe an algorithm which �nds the shortest path

satisfying the condition. Brie�y explain your approach and the resulting runtime complexity. To

obtain full points, your algorithm must have complexity at most O((|V |+ |E|) log |V |).

Hint: Consider the new vertex set V ′ = V × {0, 1}4 ∪ {vs, vd}, where vs is a ‘super source’ and vd a
‘super destination’ vertex.

Solution:

6

Consider the vertex set V ′ above, as well as the following edge set E′ and weight function w′:

E′ = {{vs, (v, (1, 0, 0, 0))} | v ∈ V, `(v) = G, }
{{vs, (v, (0, 1, 0, 0))} | v ∈ V, `(v) = F, }
{{vs, (v, (0, 0, 1, 0))} | v ∈ V, `(v) = I, }
{{vs, (v, (0, 0, 0, 1))} | v ∈ V, `(v) = R, }
∪ {{(v, (1, 1, 1, 1)), vd} | v ∈ V }
∪ {{(u, (g, f, i, r)), (v, (1, f, i, r))} | (g, f, i, r) ∈ {0, 1}4, {u, v} ∈ E, `(v) = G}
∪ {{(u, (g, f, i, r)), (v, (g, 1, i, r))} | (g, f, i, r) ∈ {0, 1}4, {u, v} ∈ E, `(v) = F}
∪ {{(u, (g, f, i, r)), (v, (g, f, 1, r))} | (g, f, i, r) ∈ {0, 1}4, {u, v} ∈ E, `(v) = I}
∪ {{(u, (g, f, i, r)), (v, (g, f, i, 1))} | (g, f, i, r) ∈ {0, 1}4, {u, v} ∈ E, `(v) = R}

w′({u′, v′}) =

{
0 if u′ = vs or v′ = vd

w({u, v}) if u′ = (u, (g, f, i, r)) and v′ = (v, (g, f, i, r))

For each new vertex (v, (g, f, i, r)) ∈ V ′, the �rst component v ∈ V is a vertex in the original

graph, while g, f , i, and r are four Boolean variables that keep trace of whether a town with

language G, F, I, or R has been visited already. Every edge {u, v} ∈ E is replaced by a set of edges

{(u, (g, f, i, r)), (v, (g′, f ′, i′, r′))} ⊆ E′ where the Boolean corresponding to language `(v) is set

to 1 and other Booleans are kept unchanged. �e weight of this edge remains the same as before.

Moreover, a global source vertex vs is connected to all vertices with (0, 0, 0, 0) Booleans with edges

of weight 0. �is corresponds to the choice of the �rst vertex (where Alice will start hiking). Simi-

larly, a global destination vertex vd is connected to all vertices with (1, 1, 1, 1) Booleans with edges

of weight 0, corresponding to the choice of the last vertex.

�e length of the shortest path that goes through all language regions is exactly the length of

the shortest path between vs and vd in G′ = (V ′, E′) with weights w′. Since all weights are

nonnegative, we can use Dijkstra’s algorithm to �nd this shortest path.

�e complexity of Dijkstra’s algorithm is O((|V ′|+ |E′|) log(|V ′|)). Here, we have

|V ′| = |V | · 24 + 2 ≤ O(|V |)
|E′| = |V |+ |V |+ |E| · 24 ≤ O(|V |+ |E|),

yielding O((|V |+ (|V |+ |E|)) log(|V |)) = O((|V |+ |E|) log(|V |)). Constructing the graph adds

a cost O(|V | + |E|) and extracting the result a O(1). We obtain a total runtime in O((|V | +
|E|) log(|V |)).

Grading: To get points, you need to 1. construct the correct graph 2. argue that it corresponds to

a shortest path problem in a nonnegative weight graph. 3. Use Dijkstra’s algorithm and gives the

right complexity.

7

